Course Offering
- Fast Lane
- Guaranteed to Run Schedule
- Digital Learning Solutions
- Fast Lane IT Workshops
- Fast Lane LIVE E-Learning
- Fast Lane Academy»
-
Professional Services»
- Home
- Content Development
- Expert 4 Hire
- Selected Technologies
- Artificial Intelligence (AI)
- Cloud
- Optical
- Security
- Wireless & Mobility
- Selected Vendors
- AWS
- Cisco
- Gigamon
- NetApp
- Microsoft
- Red Hat
- SUSE
- VMware
- Featured Vendors
- Amazon Web Services»
- Aruba»
- Cisco Systems»
- Citrix»
- Cydrill Software Security»
- EC-Council»
- Google Cloud»
- Juniper Networks»
-
Microsoft»
- What's New
- Microsoft Training
- Microsoft Certifications
- Microsoft E-Learning
- Upcoming Microsoft Courses
- Microsoft Professional Services
- Cloud Professional Services
- Redeem Microsoft SATVs
- Featured Topics
- AI Business School
- Microsoft Azure
- Microsoft Power Platform
- Microsoft Security, Compliance & Identity
- NetApp»
- Red Hat»
- Splunk»
- SUSE»
- VMware»
- Additional Vendors»
- Featured Technologies
- Artificial Intelligence (AI)»
- Cloud Computing»
- Cyber Security»
- Data Center»
- Network Analysis / Wireshark»
- Software Development»
- Wireless & Mobility»
- IT & Project Management»
- ITIL»
- PRINCE2»
- Scaled Agile»
- Scrum
- Home
- Training
- Amazon Web Services
- ERMLS Detailed outline
Exam Readiness: AWS Certified Machine Learning - Specialty (ERMLS)
Detailed Course Outline
Day One
Module 0: Course Introduction
Module 1: Exam Overview and Test-taking Strategies
- Exam overview, logistics, scoring, and user interface
- Question mechanics and design
- Test-taking strategies
Module 2: Domain 1: Data Engineering
- Domain 1.1: Data Repositories for machine learning
- Domain 1.2: Identify and implement a data-ingestion solution
- Domain 1.3: Identify and implement a data-transformation solution
- Walkthrough of study questions
- Domain 1 quiz
Module 3: Domain 2: Exploratory Data Analysis
- Domain 2.1: Sanitize and prepare data for modeling
- Domain 2.2: Perform featuring engineering
- Domain 2.3: Analyze and visualize data for ML
- Walkthrough of study questions
- Domain 2 quiz
Module 4: Domain 3: Modeling
- Domain 3.1: Frame business problems as machine learning (ML) problems
- Domain 3.2: Select the appropriate model(s) for a given ML problem
- Domain 3.3: Train ML models
- Domain 3.4 Perform hyperparameter optimization
- Domain 3.5 Evaluate ML models
- Walkthrough of study questions
- Domain 3 quiz
Module 5: ML Implementation and Operations
- Domain 4.1: Build ML solutions for performance, availability, scalability, resiliency, and fault tolerance
- Domain 4.2: Recommend and implement the appropriate ML services and features for a given problem
- Domain 4.3: Apply basic AWS security practices to ML solutions
- Domain 4.4: Deploy and operationalize ML solutions
- Walkthrough of study questions
- Domain 4 quiz
Module 6: Comprehensive study questions
Module 7: Study Material
Module 8: Wrap-up