Course Offering
- Fast Lane
- Guaranteed to Run Schedule
- Digital Learning Solutions
- Fast Lane IT Workshops
- Fast Lane LIVE E-Learning
- Fast Lane Academy»
-
Professional Services»
- Home
- Content Development
- Expert 4 Hire
- Selected Technologies
- Artificial Intelligence (AI)
- Cloud
- Optical
- Security
- Wireless & Mobility
- Selected Vendors
- AWS
- Cisco
- Gigamon
- NetApp
- Microsoft
- Red Hat
- SUSE
- VMware
- Featured Vendors
- Amazon Web Services»
- Aruba»
- Cisco Systems»
- Citrix»
- Cydrill Software Security»
- EC-Council»
- Google Cloud»
- Juniper Networks»
-
Microsoft»
- What's New
- Microsoft Training
- Microsoft Certifications
- Microsoft E-Learning
- Upcoming Microsoft Courses
- Microsoft Professional Services
- Cloud Professional Services
- Redeem Microsoft SATVs
- Featured Topics
- AI Business School
- Microsoft Azure
- Microsoft Power Platform
- Microsoft Security, Compliance & Identity
- NetApp»
- Red Hat»
- Splunk»
- SUSE»
- VMware»
- Additional Vendors»
- Featured Technologies
- Artificial Intelligence (AI)»
- Cloud Computing»
- Cyber Security»
- Data Center»
- Network Analysis / Wireshark»
- Software Development»
- Wireless & Mobility»
- IT & Project Management»
- ITIL»
- PRINCE2»
- Scaled Agile»
- Scrum
- Home
- Training
- Amazon Web Services
- PDSASM Detailed outline
Practical Data Science with Amazon SageMaker (PDSASM)
Detailed Course Outline
Module 1: Introduction to Machine Learning
- Types of ML
- Job Roles in ML
- Steps in the ML pipeline
Module 2: Introduction to Data Prep and SageMaker
- Training and Test dataset defined
- Introduction to SageMaker
- Demo: SageMaker console
- Demo: Launching a Jupyter notebook
Module 3: Problem formulation and Dataset Preparation
- Business Challenge: Customer churn
- Review Customer churn dataset
Module 4: Data Analysis and Visualization
- Demo: Loading and Visualizing your dataset
- Exercise 1: Relating features to target variables
- Exercise 2: Relationships between attributes
- Demo: Cleaning the data
Module 5: Training and Evaluating a Model
- Types of Algorithms
- XGBoost and SageMaker
- Demo 5: Training the data
- Exercise 3: Finishing the Estimator definition
- Exercise 4: Setting hyperparameters
- Exercise 5: Deploying the model
- Demo: Hyperparameter tuning with SageMaker
- Demo: Evaluating Model Performance
Module 6: Automatically Tune a Model
- Automatic hyperparameter tuning with SageMaker
- Exercises 6-9: Tuning Jobs
Module 7: Deployment / Production Readiness
- Deploying a model to an endpoint
- A/B deployment for testing
- Auto Scaling Scaling
- Demo: Configure and Test Autoscaling
- Demo: Check Hyperparameter tuning job
- Demo: AWS Autoscaling
- Exercise 10-11: Set up AWS Autoscaling
Module 8: Relative Cost of Errors
- Cost of various error types
- Demo: Binary Classification cutoff
Module 9: Amazon SageMaker Architecture and features
- Accessing Amazon SageMaker notebooks in a VPC
- Amazon SageMaker batch transforms
- Amazon SageMaker Ground Truth
- Amazon SageMaker Neo