Detailed Course Outline
From U-Net to Diffusion
- Build a U-Net architecture.
 - Train a model to remove noise from an image.
 
Diffusion Models
- Define the forward diffusion function.
 - Update the U-Net architecture to accommodate a timestep.
 - Define a reverse diffusion function.
 
Optimizations
- Implement Group Normalization.
 - Implement GELU.
 - Implement Rearrange Pooling.
 - Implement Sinusoidal Position Embeddings.
 
Classifier-Free Diffusion Guidance
- Add categorical embeddings to a U-Net.
 - Train a model with a Bernoulli mask.
 
CLIP
- Learn how to use CLIP Encodings.
 - Use CLIP to create a text-to-image neural network.